
 1

Supplementary Notes for An Introduction to Fortran Programming

April 27 2007

These notes are a brief supplement to the references provided in the documentation
section below.

1. Documentation

• A Simple Fortran Primer – Rosemary Mardling (1997) (primer.pdf)
Important note: This primer tends to use print *, rather than the common
write (*,*)

• Professional Programmer’s Guide to Fortran 77 – Clive Page (1995)
(reference.pdf)

• On atlas: man f77 . On atlas and the Linux machines: man g77,

g77 --help, info g77

• Sun Fortran manuals on shelf in Unix Lab (Room 408)

Note: PDF files can be read with Acrobat Reader (acroread on atlas or the Linux
machines).

2. Program source file (.f file)

For historical reasons dating back to the days of punched cards the standard Fortran
statement record or line is 72 columns (characters) wide:

------------------…--------
1 567 72
 �Statement (code) in columns. 7-72

Column

Long statements (exceeding column 72) can be continued on the next line by putting
a character in column 6 (often a *). Statement labels e.g. on format statements are
from 1-99999 in columns 1-5 (any justification). Comments have a c in column 1.
You can also use ! at the end of a statement

e.g. 100 IRUPDW�µ[�µ�)���� �$�FRPPHQW� (�is a blank space)

 2

Code from other source files can be incorporated with the include statement e.g.
include ‘extracode.f‘ . When the f77 or g77 command is used then the
code in the file extracode.f will be ‘pasted’ into the current file at the include
statement. We use this approach in Lab Session notes example 11 (c) (corr3.f).

3. Assignment of variables

As a general rule you will have the statement:

implicit none

as the second line of your program. This means that you must explicitly declare all
variables in the same way as the C programming language. Without this statement it
is assumed that variables beginning with I-N are integer e.g. icount and A-H and
O-Z are real e.g. radius.
The = sign is interpreted as ‘assigned to’. Each variable or array element e.g. x,
p(3) has a memory location allocated to it. Assuming that x is declared as real then
the statement x = 2 stores the real number 2.0 in the memory location allocated (or
reserved for) the variable x. If we have the two statements:

x = 2
x = x + 5.7

then the second statement takes the current value of x (2.0), adds 5.7 to x to get 7.7
and then overwrites the memory location for x with the new value i.e. after the
second statement x is now 7.7.

4. Format descriptors

In the ‘old days’ numbers had to be right-justified for read. This doesn’t seem to
apply anymore. In the following the field width w includes the decimal point and +/– .
d is the number of decimal places. Note that for write numbers are output as right-
justified and text as left-justified.

(1) Real or floating point numbers
G

Fw.d ----•-- e.g. F7.2
 ��Z��

e.g. a = 104.5627 will be output as 104.56 (note rounding to fit
format)

 3

(2) Exponential representation of floating point numbers

 �G��
Ew.d ±0•------E±xy e.g. E13.6
 �����Z�����
This always begins with a decimal part less than one.
e.g. a = 104.5627 will be output as 0.104563E+03 (note rounding to

 fit format)

(3) Integers

Iw ------ e.g. I6
 ��Z�

 e.g. j = 4 will be output as 4

(4) Character or text variables

Aw ------ e.g. A6
 ��Z�

 Character variables are written left-justified
 e.g. label= ‘date‘
 With the above format (A6) this will appear as:
 date (�LV�D�EODQN�

5. Input

(1) Read a real number from the keyboard and assign to real variable x.
real x
read(*,*)x
 keyboard �� �free format

(2) Read an integer from the keyboard into variable i.

integer i
read(*,*)i

(3) Read in 5 real numbers from the keyboard into array a.
integer i
real a(5)
read(*,*)(a(i),i=1,5) implied DO loop

The last line is equivalent to: read(*,*)a(1),a(2),a(3),a(4),a(5)

 4

(4) In many cases we read data from a file and we’ re not sure how many numbers

there will be in the file. For simplicity we will assume that the file press.dat
contains a column of numbers e.g.
1021.1
1000.3
1001.7
…
integer i,n

 real p(100)
open (1,file=’press.dat’) �Unit 1 is assigned to the file press.dat (a kind
 of short name or handle)

 do i=1,100
 read(1,*,end=9)p(i)
 enddo
 9 continue �Go to here if we encounter the end of the file (end=9)

 n= i –1 �Last value of i corresponds to the end of the file (one greater)

 write(*,*)’n=’,n

We can now process the array of numbers p(i) i=1 … n .

(5) In (4) it was assumed that we were reading in a single column of numbers.

Imagine that the file press.dat contains the following:
Data 3UHVVXre � �denotes a blank space
850601 ������
850602 ������
850603 ������

Column 1

To read in the second column of numbers into array p:
character line*80 A variable to hold 80 characters

integer i,n
 real p(100)

open (1,file=’press.dat’)
 read(1,*)line or read(1,’(A)’)line

do i=1,100
 read(1,’(9x,F6.1)’,end=9)p(i) Formatted read statement

 enddo
 9 continue

 n= i –1
 write(*,*)’n=’,n

We also use a format statement:
read(1,200,end=9)p(i) Use the format statement with label 200

200 format(9x,F6.1)
 which is equivalent to:

 5

read(1,’(9x,F6.1)’,end=9)p(i)
(6) To read in the line of text as two column labels and both columns of data:

character label1*4, label2*8 Variables to hold column labels of 4 and 8
 characters
integer i,n

 real p(100)
 integer date(100) Array to hold integer date

open (1,file=’press.dat’)
 read(1,210)label1,label2
210 format(A4,5x,A8) Format for labels

do i=1,100
 read(1,’(I6,3x,F6.1)’,end=9)date(i),p(i) Formatted read
 statement to read date(i) and p(i)
 enddo
 9 continue

 n= i –1
 write(*,*)’n=’,n

6. Output

Generally write is just the opposite of read.

(1) Write a real number x to the screen.
real x
write(*,*)x
 screen �� �free format

In the primer: write(*,*)x is equivalent to print *,x

(2) You can use a format statement and include some output text:
write(*,100)x

100 format(’The answer is ’,F8.2) equivalent to
write(*,’(’’The answer is ’’,F8.2)’)x Note repeated quotes

7. Internal read and write

This involves reading from or writing to a character variable that is treated as a
‘pretend’ file. For instance:

integer n
character*80 optarg or character optarg*80
read(optarg,*)n

 6

The integer variable n is read from the character variable optarg as if it were a line
of text in a file. Similarly for a real variable we can have:

read(optarg,*)x

We can also use a format e.g. read(optarg,’(2x,F6.1)’)x
Similarly we can write to a character variable:

write(optarg,*)x
write(optarg,’(2x,F6.1)’)x

8. Logical variables

See the primer and reference. These are declared via:

logical lexist

A logical variable is either true (1) or false (0). Usually we use an if statement with
a logical expression involving our variables e.g.

if (x.eq.5) then Is x=5? If so then go to the then section otherwise go to the else section

 y = 2 If x=5 then go here and set y=2

else
 y = -4 If x is not 5 then go here and set y=-4
endif
write(*,*)’x= ’,x,’ y= ’,y

If the expression in (…) is true the then section is executed otherwise we jump to
the else section. Sometimes we code the above as:

logical istrue
istrue= (x.eq.5) This will be either true (1) or false (0)

if(istrue)then If x is 5 then istrue will be 1 and we go to the then section

…
endif
write(*,*)’istrue=’,istrue,’ x= ’,x,’ y= ’,y

Note: If you write out a logical variable you will see T for true (1) and F for false (0)
on most systems.

 7

9. Mixed mode arithmetic

An expression that involves a combination of real and integer variables will give a
real value, as long as the output variable is real.

 real x,y
 integer i,j
 y= x/i y is real
 j= x/i j is an integer i.e. integer truncation of x/i

Hence if i= 4 and x= 11. then y= 2.75 and j= 2 i.e. 2.75 is truncated to 2.

An expression involving integers only will be the integer truncation.

 integer i,j,k
 real y
 k= i/j k is an integer i.e. integer truncation of i/j
 y= i/j y is the real conversion of the integer truncation

Hence if i= 7 and j= 2 then k= 3 (integer truncation 7/2= 3).
Note that y= 3. i.e. the integer 3 is converted to real (3.0).

 8

10. do loops

These are covered in the primer and reference but a few comments will be made.
do loops are convenient for summations used to compute the mean and other
statistics. Consider the mean of the sample x1, x2, …, xn :

1

1 n

i
i

x x
n =

= ∑

The summation is x1+ x2+ …+ xn . If we identify an array x of size n with the sample
then the summation is x(1) + x(2) + …+x(n). Alternatively the summation
can be expressed as a set of successive accumulations:

s1 = x(1)
s2 = x(1) + x(2) = s1 + x(2)
s3 = x(1) + x(2) + x(3) = s2 + x(3)
…

We can use a do loop to represent these accumulations:

xbar = 0. Initialise xbar i.e. start with a sum of zero

do i=1,n
 xbar = xbar + x(i) Add x(i) to previous sum to get current sum

enddo
xbar = xbar / n Get the mean by dividing the sum by n

In older code the form:

do 200 i=1,n
…

200 continue

is often seen.

11. Binary (unformatted) files

The files encountered in the primer and reference are formatted files that are
appropriate for text data. We open such files with a statement like:

open (1,file=’press.dat’)
read (1,*)x

 9

Much of the output from GCMs and related reanalysis projects e.g. NCEP is in a
binary form i.e. not readable to the naked eye. Such files are opened and read in a
different way. Assume we have a binary version of press.dat called pressb.dat:

open (1,file=’pressb.dat’,format=’unformatted’)
read (1)x

In the open statement we need the extra keyword format set to ’unformatted’
that means binary in Fortran. Also in the read statement we just have the unit
number without any format

12. conmap (CMP) files

We have software that takes the binary files from (say) NCEP and converts them to a
standard binary format which we call conmap (CMP) format. This is capable of
representing a variable e.g. pressure, on a longitude-latitude grid.
A fragment of code to read a CMP file) is:

 implicit none
 real xmiss
 parameter (xmiss= 99999.9) ! conmap missing value code
 integer num
 parameter(num= 200) ! Max. size of lat.-lon.
 ! grid
 real xlats(num),xlons(num) ! Arrays for lats and lons
 real dat(num,num) ! Array for input data
 character*80 head1 ! Header (description)
 character*80 infile ! CMP file name
 open(1,file=infile,form=’unformatted’)
 read(1)nlats
 read(1)(xlats(i),i=1,nlats)
 read(1)nlons
 read(1)(xlons(i),i=1,nlons)
 read(1)head1
 read(1)((dat(i,j),i=1,nlons),j=1,nlats)!See conmap.f
 close(1)
 write(*,’(’’ No. lats, no. lons: ’’,2I6)’)nlats,nlons
 write(*,’(1X,A)’)head1

We use a parameter statement to set the maximum size of our longitude and
latitude arrays to 200 points (num). Thus our two-dimensional data array (matrix)
dat is 200 x 200 points. The integers nlons and nlats hold the actual number of
longitudes and latitudes e.g. nlons = 144, nlats = 73. The array xlons
holds the actual longitude values e.g. 0.0, 2.5, … and the array xlats holds the

 10

actual latitude values from south to north e.g. –90.0, -87.5, … The array xlons is
read using an implied do loop i.e.
read(1)(xlats(i),i=1,nlats) is equivalent to
read(1)xlats(1),xlats(2),…,xlats(nlats)
The array xlons is read in a similar way. There is an 80 character text header
(head1) containing some information about the data. Finally we read in the two-
dimensional array dat using a pair of ‘nested’ implied do loops:

read(1)((dat(i,j),i=1,nlons),j=1,nlats)

 i is longitude index and j is latitude index

This works from the ‘outside’ to the ‘inside’ loop. We start with j = 1 and read the
inner loop (dat(i,1),i=1,nlons). Then j = 2 and we read
(dat(i,2),i=1,nlons) and so on. For each latitude index j we read the values
of dat at each longitude index i i.e. we read the data on latitude circles from south
to north. If we specified each array element individually we would need:

read(1)dat(1,1),dat(2,1),…,dat(nlons,1),dat(1,2),dat(2,2),…
dat(nlons,2),…,dat(1,nlats),dat(2,nlats),…dat(nlons,nlats)

To write out a CMP file we just replace read by write in the above code.
The conmap format has a code to represent missing or undefined data (99999.9) as
set by xmiss. This is useful to process files with missing data since we want to
exclude these from our summations etc. See: statcon.f .

13. Functions

These are a special kind of variable. There is no need to declare intrinsic (built-in)
functions e.g. sin but you need to declare your own e.g. probst in the correlation
examples. A function returns a value that is normally assigned to a variable e.g.
real x,y
y = sin(x)
Here the value of x is input to the intrinsic function sin which returns the value
sin(x), assigned to the variable y.

14. Subroutines

These don’ t require declaration. There is an association between the variables in the
calling routine and the subroutine. Variables must match in terms of type e.g. real,
and array size but they can have different names. For instance:

 11

program test2
integer n
real x(100)
real meanx
call calcmean (n,x,meanx)
… � �
end
subroutine calcmean (n,y,ybar)
integer n
real y(n)
real ybar
…
return
end

The subroutine takes the array x of size n i.e. x(1), x(2), … x(n), computes
the mean ybar and passes this back with the name meanx in the calling routine.
Note that n and y are also passed back so if they are modified in the subroutine then
they will be modified in the calling program after the call statement. Usually we
label subroutine arguments that are not modified as inputs and those that are as
outputs.

15. Command-line arguments: getarg, iargc

These are useful intrinsic (built-in) routines to simply input and output.
Imagine we have a program called jason1. By using the above routines we can read
filenames and other arguments from the command line. In our case we want to give
an input file (argument 1) and an output file (argument 2)
e.g. jason1 press.dat mean.dat

 argument 1 argument 2

A program fragment to do this is:

character optarg*80, infile*80, outfile*80
integer narg
narg= iargc() This will be 2 in the above example i.e. 2 arguments

write(*,*)’No. of arguments: ’,narg
call getarg (1,optarg) Get first argument from command line and put into optarg

Argument 1

infile= optarg This variable holds the name of the input file
call getarg (2,optarg) Get second argument from command line and put into optarg

Argument 2

 12

outfile= optarg This variable holds the name of the output file
open(1,file=infile) Open the input file

open(2,file=outfile) Open the output file

We can also read numerical arguments from the command line
e.g. jason1 press.dat mean.dat 24.5

 argument 1 argument 2 argument 3

Argument 3 can be read by adding:

real x
…

call getarg (3,optarg) Get third argument from command line and put into optarg

Argument 3

read(optarg,*)x Do an internal read from optarg i.e. read x from optarg
write(*,*)’x= ’,x

This approach is very useful for handling a large set of input files
e.g. jason1 press.9601?? mean.dat

Under UNIX or Linux the argument press.9601?? is expanded into a set of filenames
which differ in the last two characters. Note that at least one of these files must exist.
Assume that the files are called press.960101, press.960102, press.960103, … ,
press.960107 i.e. daily pressure files for Jan 1 1996 to Jan 7 1996. Then the command
line will be expanded as if the individual files were given i.e. as if we had specified:

jason1 press.960101 press.960102 … press.960107 mean.dat

 Argument 1 Argument 2 Argument 7 Argument 8

Such an approach is used in statcon.f (see Lab Session notes example 9).

16. Common blocks

We won’ t discuss these in detail.
See Lab Session notes examples 10 (cblk1.f, cblk2.f) and 11 (c) (corr3.f).

17. Makefiles

We won’ t discuss these in detail but see example 11 (d) (corr4.f) in the Lab
Session notes.

 13

18. Error messages

In general, Sun f77 compilation and runtime messages are often cryptic. The
messages from g77 tend to be clearer. The following are some common errors
encountered using Sun f77. They have a similar expression using g77.

• list io: [-1] end of file
logical unit 1, named ‘press.dat’
part of last data 11.0 ^J |
Abort
This occurs if you try to read past the end of a file i.e. the program expects
more data than is given in the file.

• Killed
There is not enough system memory to run the program. This could be due to
the presence of other processes on the system consuming most of the available
memory or the program’ s memory requirements exceed the limits for the
system.

• Segmentation fault
This usually means that the memory allocated to the program as it is running
has been corrupted in some way. It often arises with illegal array processing
e.g. try to write out a(1) … a(1000) when the maximum size of a is (say)
5.

• I/O error
This occurs when you have the wrong format e.g. read (1,’(I5)’)x
where x is real. Note that this is a runtime error – depending on the compiler it
may not show up in the compilation stage.

• Subscript out of bounds
This occurs when you try to process an array element outside the valid range
when the program was compiled with f77 –C (Sun) or
g77 –ffortran-bounds-check (Sun or Linux PC)
e.g. real a(5)
 write(*,*)a(6)
The element a(6) is not valid so using the above options will cause the
program to abort.

