
 1

A No Frills Introduction to Fortran Programming

Kevin Keay

Apr 27 2007

1. Introduction

1.1. What is Fortran?

 Fortran (Formula translator) is a scientific programming language which began life in the late
1950s. The language was designed to help scientists and engineers perform complex computational
tasks. Basically it was a way of getting a computer to operate on mathematical formulae and equations
in various fields, like meteorology, and produce ‘answers’ to practical problems. It has evolved over
the ensuing decades to become the leading scientific language. Much of the world’s library of
scientific programs is in Fortran although this will change with the increasing popularity of C, which is
suitable for any programming task, not just for science. In fact, many of today’s Fortran compilers,
which turn Fortran source code into an executable piece of software that actually runs on a computer,
are written in C and translate the Fortran code into equivalent C routines. Many scientific
organizations, like the Australian Bureau of Meteorology, continue to use their older Fortran code
since it is too expensive and inefficient to rewrite the existing code in C, especially if it is working
correctly. Of course, many new routines are being written in C and the two languages may be
interfaced too. Hence Fortran programs will still be compiled and used in the future.
 Today there are two common versions of Fortran which are widely used: Fortran 77 and
Fortran 90 (the numbers are supposed to reflect the years in which they appeared). The former is
available for all platforms (PC, Sun, iMac) while the latter is traditionally associated with
supercomputers (Cray, NEC), which have more than one CPU, since it features parallel and vector
processing (ways to make a program run faster).
 This guide is a very brief introduction to Fortran 77. In general, Fortran source code and system
commands e.g. g77, will be presented in Courier font, to distinguish them from other text. We will
look at the compilation and running of a simple example program. A brief discussion of software to
read and graph some common weather data formats will be given, together with their location. Finally,
some suggested reading is outlined.

1.1. Fortran 90

 There is not a lot of experience with Fortran 90 in our group. However there are Fortran 90
compilers on atlas (Sun) and zeus (DEC Alpha) – both are called: f90. Kevin Keay has limited
experience with Fortran 90 but should be approached initially with any queries. He has compiled a few
Fortran 90 programs written elsewhere. Fortran 90 allows the user to operate on arrays and vectors in a
simpler way than Fortran 77 – the code looks quite different! Most of you probably won’t need to use
it but there is a possibility that you might obtain code from outside the group written in this way.

1.2. Other programming languages

 For your research you are most welcome to use other languages such as C. We recommend
Fortran due to the wealth of experience within our group and it is not too difficult to learn. For your
information the free C compiler gcc is available on all operating systems. The Suns also have the
compiler cc. Kevin Keay has written some programs in C but is not an expert!

 2

2. A simple example

We will consider a simple Fortran program to illustrate the basic concepts involved.

2.1. Basic structure of the program

 Here is a very simple Fortran program. It consists of a set of statements that start with the
program statement and finish with the end statement. This set of statements, or the Fortran source
code, is saved in a text file e.g. first.f . To avoid compilation ‘hassles’ it is a good idea to use the
extension .f for your source code files. Also, save as ‘text-only’ , not as a Word document.
 Each statement begins in column 7 and ends no greater than column 72 (the ruler just before
the example is to make this clear – this ruler does not appear in the source code file). There are a
couple of exceptions to this. Firstly, if you have a long statement you place a character in column 6 of
the next line (often a + or *) and continue the rest of the statement. Secondly, you may need to use
statement numbers associated with the goto and format statements. These numbers may go
anywhere in columns 1-5. They are actually labels of your choice and have not connection with the
line number in the source code file. Thirdly, you may put comments anywhere in your program. These
have the character c in column 1 followed by any text. You may also use an exclamation mark (!) after
a statement – an in-line comment.

 111---777
123456789012---012

 program first
c
c * Declaration section
 implicit none ! Need to declare all variables
 real x,y
c
c * Executable section
 write(*,*)’My first program’
 write(*,*)’Enter a number: ’
 read(*,*)x

 y= x**2 +4*x -12

c * Free format output
c In Mardling, print is used instead of write
c i.e. write(*,*) == print *,
 write(*,*)’x=’,x,’ y= ’,y

c * User-specified formatted output
 write(*,10)x,y
10 format(’x=’,F8.4,2X,’y=’,F9.5)
 end

 The program comprises two sections: declaration and executable. The declaration section
consists of statements that define variables and parameters used in your program. These immediately
follow the program statement (this just has the name of your program) and come before all
executable statements. The executable section consists of statements that actually do something e.g. the
read statement reads in data from the keyboard or a data file. The executable statement: y= x**2
+4*x -12 computes the variable y from the value of x. Finally, we have
the end statement.

 3

 We may also regard the executable section as comprising three generic blocks: input,
processing and output. The input block is the read statement – this allows us to input data into the
program. The statement: y= x**2 +4*x -12 is the processing block. Here we perform operations
on (process) x to get y. Finally, the write statements constitute the output block – we need to view
our results, in this case the value of y.

2.2. What does this example program do?

 Well, it prints a couple of informative messages on the computer screen (write) and waits for
you to enter a real (floating point) number (read) e.g. 2.5 (note that if you enter 2 it is interpreted as
2.0). The statement: read(*,*) means read from the keyboard and the number will be interpreted
from its declaration i.e. real. This number is assigned to the variable x and then the statement: y=
x**2 +4*x -12 computes the variable y – in this case, y would be 4.25. Finally, the values of x
and y are written on the screen (write). For illustration, this is done in free format and then by a
user-defined format. The first approach involving write(*,*) is convenient - this means write
to the screen in a default way - while the second approach using the two statements write(*,10)x,y
and 10 format allows greater control over the written output. Note that the connecting
statement number or label (10) for the second approach.

2.3. Compiling the program

 To compile this program we need a Fortran compiler. This is a piece of software which reads
the Fortran source code file (first.f) and turns it into an executable program (software) which runs on
your computer. The executable program is often called an executable or a binary. On most of the
computers systems in the School of Earth Sciences there is a public domain Fortran 77 compiler called
g77. Traditionally, the compiler is called f77 but on some machines (especially the Suns) there is a
proprietary Fortran compiler (f77) as well as the ‘free’ one (g77). In general, f77 may have some
different options to g77.Note: On the Linux PCs and Windows XP, g77 is usually aliased to f77 so
the names actually refer to the same compiler.
 Hence to compile our example on any computer system:

 g77 –o first first.f

The option –o allows us to specify the output name of the executable. By default i.e. without the –o
option, it is called a.out (or a.exe on Windows PCs).
 The compiler produces one or more binary objects with the extension .o corresponding to your
source code In our case, there is one called first.o but it is not retained unless the –c option of the g77
compiler is used. When the program is compiled some pre-packaged routines which are stored as
libraries are linked with the compiler binary output (objects) from your source code to create an
executable. To show the creation of the object, the above compilation could be performed in two steps:
 g77 –c first.f (this creates the binary object first.o)
 g77 –o first first.o (this links the object to the system libraries to create
 the executable)

An extension of this approach is used in makefiles involving the make command. (This will be
touched on in the Lab Session). Some simple examples of these are intrinsic (inbuilt) functions e.g.
sin(x). Depending on the complexity of your program, a host of libraries may be required. For instance,
to incorporate NCAR Graphics into your Fortran program (like conmap) the NCAR Graphics
libraries need to be available to the compiler so that the graphics routines are linked with your code.
 The executable will only run on your current operating system e.g. an executable compiled on a
Linux PC will not run on a Windows XP PC or an iMac. However, in principle you can transfer the

 4

source code (first.f) to other machines and compile it there – and it should work! This is the real power
of programming.

2.4. Running the program

 To run the executable, just type in the name: first . On the screen you will see the
messages:

 My first program
 Enter a number:

followed by a prompt. Enter a number from the keyboard e.g. 2.5. Then some more output text is
written to the screen:

 x= 2.5 y= 4.25
x= 2.5000 y= 4.25000

The above is the screen output on a PC running Windows 2000. The program was compiled with g77
under the Cygwin Linux emulation software. (This software is available on the PCs running Windows
XP in the PC Lab.)
The first line uses free format and is chosen by the compiler. The second line is specified by the user in
the format statement. Firstly, we write the text: x= on the screen. The value of the variable x is written
in a field of 8 columns with 4 decimal places (F8.4), followed by a white space of 2 columns (2X).
Finally, we write the text: y= and the value of the variable y in a field of 9 columns with 5 decimal
places (F9.5). In both fields F denotes floating point (real) numbers corresponding to the declaration
of x and y as real variables.

2.5. Some remarks on the example

 See sections 2-6 of Reference [2] for some additional information that may help to understand
the example. Although the above program is quite simple it nevertheless illustrates the basics of
Fortran programming (in fact, any programming language). Extensions of the example might include
reading from a data file, doing some processing e.g. computing the mean or a Fourier transform, and
outputting to another data file. The input and output files may have a special format, perhaps even
binary i.e. not viewable as text. Much of our weather data is in binary formats – usually they result in
smaller files and are read more quickly than text files if there is a lot of data.

3. Software to read or graph some common weather data formats

 This is a brief list of software which may be used in conjunction with Fortran programs to read
and graph data provided in some common weather data formats. Note: This section is still under
development.

3.1. conmap

 The conmap (CMP) format is a simple binary one that we use in our group. Many people in our
group have written programs which use this format. Some people (ex-students!) at CSIRO
Atmospheric Research and the Australian Bureau of Meteorology also use it. See section 10 of
Reference [2]. It is a convenient format for simple grided data e.g. global MSLP, and was devised so
that weather data could be plotted with the free NCAR Graphics software. (There are some manuals
discussing NCAR Graphics in the Unix Lab). We have Fortran programs e.g. conmap, which

 5

incorporate the NCAR Graphics libraries and produce contour maps of variables like MSLP – options
include colour shading. To compile your own programs with NCAR Graphics you need to use the
ncargf77 command. For initial queries see Kevin Keay. Note: On the Linux PCs, conmap is the
same as conmap_kk on a Sun. The latest version is called conmap7.The latter operating system has
an older version called conmap while conmap_kk (written by Kevin Keay) has some extra features.
The latest Linux version is called conmap7. For usage: conmap7 --help

3.2. NetCDF

 Many weather data processing centres provide their products in NetCDF format which is
supported across many scientific fields i.e. it is a general format. Unfortunately, we don’ t have any
general programs to read NetCDF files – no one has been game enough to write one! Some options
are:

1. Kevin Keay has a couple of Fortran programs which may be modified for the dataset being
used. These programs output grided data in CMP (conmap) format. A good one to use for
reanalysis products is read_nc2cmp. To compile your own programs that use NetCDF
routines you need to include a special declarations (or header) file called netcdf.inc in your
Fortran source code and specify the NetCDF library using the option -lnetcdf
with the g77 command. For initial queries see Kevin Keay.

2. Tim Butler wrote a C program called read_ncep to read NetCDF files from NCAR. The
program was modifed by Kevin Keay to allow less than one year of data. The input files should
contain 6 hourly data – the output files are in conmap format.To get limited help type:
read_ncep . Note: This program is currently available on the Suns only.

3. Tim Butler also has an approach involving Perl to read NetCDF files. This is useful for
‘peculiar’ NetCDF files.

4. The free software GrADS (grads) can read many NetCDF files via the sdfopen command.
You can also perform data processing and plot data as maps with grads. The software has an
interactive X-Windows interface but may also be run in batch (script) mode.

5. Matlab (matlab) can read many NetCDF files. However, some data processing centres like
NCEP often use a linear transformation on their data – scale and offset. These can be
found using the command ncdump –h netcdffile. If they are other than 1 and 0
respectively you need to perform the transformation: y = scale*x + offset where x in
the array read into matlab and y is the output array. There are extensive graphing capabilities
within matlab.

3.3. GRIB

 The GRIB format is an official WMO standard. In fact, data processing centres like NCEP and
ECMWF store their data in this format and then convert to NetCDF for outside use. Some options are:

1. The free program wgrib by Wesley Ebisuzaki of NOAA can decode most GRIB files except
for the reduced N80 Gaussian grid of ECMWF. The output is a file called dump and if you
redirect the screen output of wgrib to a file called hdr (say), then the readgribn7 program
by Kevin Keay may be used to turn dump into a set of conmap files. The latter Fortran program
is not general. It has been devised for the common 2.5x2.5 degree and 1.875 degree Gaussian
grids of NCEP (both) and ECMWF (former) but can be easily modified for other datasets.

2. The free program xconv can be used to convert GRIB files to NetCDF files. See section 3.2
for NetCDF reading options. This program is especially useful for the reduced N80 grid
mentioned in (1) since it can interpolate to a regular grid. It has an interactive X-Windows
interface. There is also a script-based approach for converting a whole batch of files. Kevin

 6

Walsh has been experimenting with this and the scripts have been passed on to Kevin Keay.
For further information on xconv see: http://www.met.rdg.ac.uk/~jeff/xconv/ .

3.4. Location of programs and packages

 In order to access the programs discussed above, as well as others e.g. cyclone tracking
software, you need to specify their locations. This can be done with the PATH environment variable or
via an alias command. As part of the distribution of this material there is a zip file called
zdotfiles.zip which contains some dotfiles, named as such since they begin with a dot (.). If you
already have a file called .cshrc in your home directory then you might want to rename it i.e.
mv .cshrc .cshrc.bak . Note: To list dotfiles you need to use: ls –a . Then in your home
directory e.g. /home/kevin, type: unzip zdotfiles . You may add your own customisations if you
wish – perhaps you have some already in your current dotfiles. This procedure will allow you to access
most programs on the Suns or Linux PCs with ease. The names of the programs from sections 3.1-3.3
are:

• conmap - on a Linux PC conmap is equivalent to conmap_kk on a Sun.
• conmap7 - latest Linux version of conmap.
• grads
• matlab
• read_nc2cmp
• readgribn7
• xconv

• wgrib

Unless indicated, the same name is used on Linux PCs and a Sun.

4. References

4.1 Suggested reading

 This document is also in: intronotes.pdf
It is recommended that you also read the following documents in this order:

1. A Simple Fortran Primer – Rosemary Mardling, Monash University (1997) (used with
permission of the author). See: primer.pdf

2. Supplementary Notes for An Introduction to Fortran Programming – Kevin Keay (2006). See:
suppnotes.pdf

4.1 Further information

You may obtain further information from the following sources.

3. Professional Programmer’ s Guide to Fortran 77 - Clive Page, University of Leicester (1995)
(public domain). See: reference.pdf

4. See: man g77, info g77 and g77 –-help on the Linux PCs and Suns. Some of these
help pages may not be on other operating systems. On the Suns see: man f77 for help on the
Sun f77 compiler (not the same as g77). For Fortran 90 see: man f90 on atlas (Sun).

5. Sun Fortran manuals (Unix Lab Room 408).

