
 1 

Advanced UNIX Lab Session  

 

March 16 2009 

 

 

Most of the reference material for this session is included in the relevant documents at: 

 

http://www.earthsci.unimelb.edu.au/~kevin/UNIX_Course/ 

 

Advanced_UNIX_Lab_Session_2009.pdf 

Introduction_to_Advanced_UNIX_2008.ppt 

Intro_to_C-Shell_Programming_2008.pdf 

Intro_to_Advanced_UNIX-Part_1_2008.pdf 

Intro_to_Advanced_UNIX-Part_2_2008.pdf 

Intro_to_Advanced_UNIX-Part_3_2008.pdf 

zadv_unix.zip 

 

This document includes extracts from the above plus some new material. 

 
 
Software 

 
cmp2cdl4 

 

This is a utility to translate a single of multi-map CMP (conmap) file into a NetCDF CDL text 

file. The CDL file may then be converted by ncgen into a binary NetCDF file for input to 

GrADS, Matlab, NCO or Panoply. 

Usage: cmp2cdl4 [-h] -n nmlist -i cmpfile -o cdlfile 

 

Documentation: 

For a help screen: cmp2cdl4 –h 

 
Namelist details:  
 

  namelist /nmcdl/ var, 

 * attr_var_long_name, attr_var_units, 

 * gattr_desc, gattr_hist, 

 * date_time_fmt, date_time_type, 

 * nc_name, time_unlimited, 

 * map1, map2 

   

 Example namelist: 

  &nmcdl 



 2 

    var= 'H', 

    date_time_type= 'YM', 

    date_time_fmt= '(18x,I4,I2)', 

    attr_var_long_name= 'H', 

    attr_var_units= 'per Kelvin', 

    gattr_desc= 'Monthly H (year-month) based 

  on monthly HadISST T and NCEP 

  Reanalysis E; Period Jan 1979 - Dec 2005', 

    nc_name= 'my_H', 

    map1= 5, 

    map2= 10, 

    time_unlimited=F, 

    gattr_hist= 'Created by Kevin Keay', 

  &end 

Example: cmp2cdl4 -n nmlist.txt -i cstatdat.cmp -o test.cdl 

 ncgen -b test.cdl (uses name in CDL file) 

 ncgen -o test.nc test.cdl 

 

 

conmap 

 

This is a program based on NCAR Graphics for plotting gridded binary files in a simple format 

called ‘conmap’ (CMP, also known as CIF at CSIRO or the Bureau of Meteorology). There are 

a number of versions in use: 

 

Orthus (Solaris OS) 

 

conmap: Original program 

conmap_kk: An early enhanced version by Kevin Keay 

 

Linux machines 

 

conmap: Similar to conmap_kk on orthus 

conmap_kk: An alias of conmap 

conmap5: A later version (v. 5, 2005). Use this for vector plots (-V option) 

conmap7: Most recent version (v.7.04, 2006). In general, use this one except for vector plots. 

 

Usage: conmap [options] cmpfile [< instruction_file] 

 conmap7[-k namelist_file][options] cmpfile [< ins_file] 

 

Documentation: http://www.earthsci.unimelb.edu.au/~kevin/conmap_man.pdf 

This covers the main options but needs to be updated. 

For brief help on conmap7: 

 



 3 

conmap7 –help  and: 

conmap7 --namelist 

 

to see some information about the namelist parameters (options -k, -K). 

 

A remark on binary CMP (conmap) files 

 

If you are using a Linux machine e.g. tide, you need to convert the CMP (conmap) file using a 

program written by Kevin Keay called binswap. (This is actually written in C!): 

 

binswap –c pmsl.ncep.sun.cmp pmsl.ncep.linux.cmp 

 

where binswap is run on the Linux machine. 

The output CMP file (pmsl.ncep.linux.cmp) can now be read on a Linux machine. 

The reverse procedure is also true: a Linux CMP file may be converted on a SUN with 

binswap. 

 

 

Answering prompts 

 

Often you will use programs that require answers to questions as well as command-line 

arguments. A program used by many people in the group for plotting data on a latitude-

longitude grid is called conmap, which is a Fortran program based on the free NCAR Graphics. 

There are several variations of this program e.g. conmap7, but the generic name conmap will 

be used for illustration. Here is an example. 

 

At the prompt type: 

 

conmap –SB pmsl.ncep.sun.cmp 

 

You will be asked: 

Do you want a grey scale rather than colour bands? 

Answer n for no. 

Enter format for key labels (6 chars) e.g. (f6.1) 

Type (f6.1)   (appropriate for pressure values) 

Do you want to select your own colours? (y/n) 

Answer n 

Do you want the key? 

Answer y 

You should then see a message: DO NOT FORGET TO USE GLW_COLOR TO PRINT 



 4 

A special graphics file called gmeta has been created. 

At one stage the script glw_color was used for printing purposes. Today you can use: 

 

g2ps –c gmeta 

 

where –c means a colour plot. 

This creates a Postcsript file called g.ps. You can use convert to change this to a graphics 

format e.g. PNG, JPEG, to insert into (say) a Microsoft Word document: 

 

convert g.ps g.png   

 

There are many options for convert – see: man convert 

The Linux version is more recent than the SUN version – see for instance the –trim option. 

 

Now, rather than answering the prompts we can store our responses in a text file and control the 

program. Using: 

 

nedit icon 

 

Type: 

n 

(f6.1) 

n 

y 

 

and save it. Then run the script: 

 

#!/bin/csh –f 

conmap –SB pmsl.ncep.sun.cmp < icon 

g2ps –c gmeta 

convert g.ps g.png 

exit 

 

The < means read the responses from the file called icon rather than the keyboard. 

A variation on this theme is to include the responses in the script using the << operator: 

 

#!/bin/csh –f 

conmap –SB pmsl.ncep.sun.cmp << !    # The responses end at next instance of 

! 

n 



 5 

(f6.1) 

n 

y 

! 

g2ps –c gmeta 

convert g.ps g.png 

exit 

 

 

GrADS 

 

GrADS is a free package that can be used to plot gridded data and also perform data processing. 

It has a scripting language so that complex procedures can be created. A useful feature is 

sdfopen which allows common NetCDF files to be read. There is a version for Windows and 

the Mac too. The current version is 1.9b4.  

 

Usage: grads 

Also see the documentation especially the tutorial. 

 

Documentation: http://www.iges.org/grads/gadoc/index.html 

 

 

NCL 

 

NCL (NCAR Command Language) is the successor to NCAR Graphics. It also has NetCDF 

manipulation utilities. Currently it is available only on the Solaris (SUN) machine atlas and the 

VisLab Linux machines (vislab*). See the NCL website for documentation. 

 
Documentation: http://www.ncl.ucar.edu/Document/index.shtml 

 

 
Using NCL in the School of Earth Sciences 

 

The current version of NCL is 5.0.See: 

http://www.ncl.ucar.edu/ 

 

The first point of call should be 'Getting Started With NCL': 

http://www.ncl.ucar.edu/get_started.shtml 



 6 

 

You can ignore the environment/setup sections - see below under 'Setting up the NCL environment' 

for our network. Some simple examples to try are at: 

http://www.ncl.ucar.edu/Document/Manuals/Getting_Started/examples.shtml 

 

On our machines you can access these examples (and others) like this: 

  ng4ex gsun01n 

  ng4ex gsun02n 

   ... 

  ng4ex gsun11n 

 

To run a NCL script e.g. gsun01n, use something like: 

   ncl < gsun01n 

 

A categorised list of NCL application examples is at: 

http://www.ncl.ucar.edu/Applications/index.shtml 

 

Setting up the NCL environment 

 

This should have been handled when you set up your UNIX account so this section is just for 

reference. At present, NCL will work only on the Vislab Linux machines and atlas. 

Version 5.0 is installed on both.  

NOTE: If you are connecting from a RedHat Linux machine e.g. cove, you may have to manually 

set your DISPLAY variable after you have logged on to a vislab machine. Before you connect: 

  echo $DISPLAY 

  cove:10.0 

 

Then: 

  ssh vislab01 

 

Try: 

  ng4ex gsun01n 

 

If it aborts then try: 

 

setenv DISPLAY cove:10.0  (whatever the above echo command printed) 

ng4ex gsun01n 

 



 7 

Note: The setenv command only has to be done once for a particular window/session. 

From Cygwin: ssh -X vislab01 seems to work with an additional setenv. 

 

 

readgribn7 

 

This is used in conjunction with wgrib to decode GRIB data files to CMP (conmap) format.  

For usage: readgribn7 

See Part3 for more information. 

 

 

read_nc2cmp 

 

This is used to decode common NetCDF data files, such as those available from reanalysis 

products, to CMP (conmap) format. 

For usage: read_nc2cmp 

See Part3 for more information. 

Note: At this stage read_nc2cmp will not run on the VisLab (vislab*) machines since the utility 

udunits is unavailable. Try the RedHat machines e.g. cove, or the Solaris machine atlas 

However, the output on the SUN machine (atlas) needs to be processed by binswap on a Linux 

machine to make it compatible with these machines. 

 

 

wgrib 

 

Usage: wgrib [gribfile] [options] 

 

Documentation: http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html 

A brief help screen is given by: wgrib 

See Part 3 for more information. 

 
 



 8 

Lab session – Advanced UNIX 

 

Kevin Keay 

 

March 16 2009 

 

 
1. Log on to one of our Linux machines e.g. cove, tide: 

      ssh –X cove 

2. cd ~ 

mkdir adv_unix 

cd adv_unix 

  cp /home/kevin/unix_course/zadv_unix.zip . 

unzip zadv_unix.zip 

 

You will see these folders in adv_unix: 

 

data/  gmt/  lab/  reanal/ 

 

The Lab session scripts are in lab, the decoding of a NetCDF file and data 

processing examples are in reanal and the GMT examples are in gmt. 

 

The scripts have names ending in .csh. When you write your own scripts you may  

call them whatever you wish e.g. add_files. 

3. As a quick exposure to writing scripts: 

     nedit s1.csh 

 

    Type: 

 

  #!/bin/csh –f 

  set x = `whoami`  # Store the username in $x 

  echo $x           # This will write the username on the screen  

 

    Save it. 

   At the shell prompt: 

 

  csh –n s1.csh 



 9 

 

   This just checks for errors – the script is not executed. 

   Make the script an executable file: chmod 755 s1.csh 

   Run it: 

 

  s1.csh   

 

   You should see your username printed on the screen 

    e.g. kevin 

 

4. Try out the other scripts: s2.csh – s7.csh or in UNIX, s[2-7].csh (!) 

    To display the PNG files from s6.csh and s7.csh use: display g.png 

 

Examples  
 

s1.csh 

 
#!/bin/csh -f 

set x = `whoami`  # Store the username in $x 

echo $x           # This will write the username on the screen 

 

s2.csh 
 

#!/bin/csh -f 

set ff = `ls`     # $ff will contain all the filenames in the 

current folder 

@ nf = $#ff       # $nf is the number of filenames 

@ i = 1 

while ($i <= $nf) 

  set f = ($ff[$i]) 

  echo "File "$i ":" $f     # Write each filename on screen 

  @ i ++                    # Increments counter $i by 1 

end 

 

 

s3.csh 
 

#!/bin/csh -f 

foreach f (*.pal) 

  echo "Input filename:" $f 

  set o = `echo $f | sed -e "s/pal/txt/"` 

  echo "Renaming $f to $o" 

  mv $f $o 

end 

exit 

 

Note: The *.pal files are renamed (moved) to *.txt. The original *.pal files are stored in zpal.zip. 
Before proceeding, restore these files: 
 



 10 

unzip zpal.zip 

 

 

s4.csh 
 

#!/bin/csh -f 

foreach f (pmsl.ncep.????????.cmp) 

  echo "Input filename:" $f 

  set d = `echo $f | cut -d. -f 3`    # d is date (field 3) 

  echo "Date:" $d 

  set yr =  `echo $d | cut -c 1-2`    # Use characters 1-2 as year 

  set mn =  `echo $d | cut -c 3-4`    # Use characters 3-4 as 

month 

  set dy =  `echo $d | cut -c 5-6`    # Use characters 5-6 as day 

  set hr =  `echo $d | cut -c 7-8`    # Use characters 5-6 as hour 

  echo "Year: "$yr "Month: "$mn "Day: "$dy "Hour: "$hr 

end 

 

s5.csh 
 

#!/bin/csh –f 

echo "List 1" 

ls pmsl.ncep.96060[1-3]*.cmp 

echo "List 2" 

ls pmsl.ncep.96060[1,3]*.cmp 

echo "List 3" 

ls pmsl.ncep.9606??{06,18}.cmp 

 

 

s6.csh 
 

#!/bin/csh -f 

if ($#argv == 0) then 

  echo "Usage: s6.csh CMP_file" 

  exit 

else 

  set infile = ($1)   # Assign argument 1 to infile 

  echo "CMP file: "$infile  # or ${infile} 

endif 

  

# Create plot (gmeta) using instruction file icon (answers to 

prompts) 

conmap7 -k icon_k.band.s6 -SB $1 < icon 

# Convert gmeta to Postscript (g.ps) 

g2ps -c gmeta 

# Convert g.ps to g.png (PNG file) 

convert -trim -density 100 g.ps gs6.png 

 

echo "Plot file: gs6.png" 

# Next line - needs to have \! not just ! - confuses csh 

echo "Done\!" 

 

exit 



 11 

 

 

Note: The script s6.csh uses additional files (icon.k.band.s6 and icon) to work correctly. These 

files contain parameters and responses for conmap7. 
 
 
s7.csh 
 

#!/bin/csh -f 

 

# In this example it is ASSUMED that you will give a conmap 

filename  

# This becomes argument 1 ($1) 

 

if ($#argv == 1) then 

echo "Filename is "$1 

conmap -SB $1 << !    # The responses end at next instance of ! 

n 

(f6.1) 

n 

y 

! 

g2ps -c gmeta 

convert g.ps g.png 

 

else 

  echo "ERROR: Give a filename, silly\!"  # Note \! not just ! 

endif 

 

exit 

 

 

Note: The script s7.csh uses the << ! … ! structure to give the responses for conmap7. 

 

 

NCL examples 

 

There are some introductory examples that you can try out using the ng4ex command: 

 
ng4ex gsun01n 

ng4ex gsun02n 

 ... 

ng4ex gsun11n 

 

To run a NCL script e.g. gsun01n, use something like: 

   ncl < gsun01n 

 

 



 12 

 

Data processing  

 

1. An example of decoding a NetCDF file and data processing 

 

The C-shell scripts and conmap7/ausmap instruction files are in adv_unix/reanal. 

Assume we have downloaded a NetCDF file called pmsl_198007_part_ncep2.nc from the 

NCEP Reanalysis (NCEP2) web site. It is located in folder adv_unix/data. A header dump i.e. 

ncdump -h pmsl_198007_part_ncep2.nc, indicates that the pressure variable is named 

mslp and has units of Pa (we will rescale to hPa). There are 16 maps from July 1 1980 OOUTC 

- July 4 1980 18UTC. 

Hence we may decode all of the maps in the NetCDF file with the command: 

read_nc2cmp -i ../data/pmsl_198007_part_ncep2.nc -o pmsl_ncep2.cmp \ 

-u mslp -r NCEP2 -v PMSL -s 0.01 

 

Note: \ is the C-shell continuation character in scripts – omit \ and type as one line interactively. 

The multi-map CMP (conmap) file is named pmsl_ncep2.cmp and contains 16 maps. 

We may obtain the individual maps as separate files with: 

splitcon -n -l pmsl_ncep2.cmp 

 

The CMP files are: pmsl.ncep2.1980070100.cmp - pmsl.ncep2.1980070418.cmp 

We can take the average of these 16 maps with: 

statconmap pmsl.ncep2.198007*.cmp 1 ave.cmp 

 

The '1' indicates that the output CMP file (ave.cmp) is an average file. 

 

We might want to express a given map as an anomaly from this average (usually we would 

use a longer averaging period). This can be achieved by: 

conmanip2 -s pmsl.ncep2.1980070218.cmp ave.cmp diff.cmp 

The option -s is 'subtract' - for usage: conmanip2  



 13 

In this example diff.cmp is the anomaly for July 2 1980 18UTC 

 i.e. (map at this time) - (average of 16 maps). 

 

We can produce a southern hemisphere plot of the average map with: 

plot_ave.csh ave.cmp 

You may display the plot with: display gave.png 

(The PNG file name is printed on the screen during script execution). 

 

Note: For polar stereographic plots, there is a plotting glitch if lon 0 is not 



 14 

duplicated as lon 360. The program fixcon (for usage: fixcon) will duplicate the lon 0 

at lon 360. 

 

fixcon -d diff.cmp diff.cmp 

fixcon -d ave.cmp ave.cmp 

 

Similarly a plot over the Australian region is created with: 

plot_ave.aus.csh ave.cmp 

 

A plot of the anomaly (difference) map for July 2 1980 18UTC is produced by: 

plot_diff.aus.csh diff.cmp 



 15 

 

A plot of the actual gridpoint values of the anomalies for this particular time  

may be created with ausmap, using the raster (-X) and print (-P) options: 

ausmap -X -P -2 -s diff.cmp < iaus.raster.diff 

g2ps -c gmeta 

convert -trim -density 100 g.ps gdiff_raster.png 

display gdiff_raster.png 



 16 

 

Perhaps we want to use the anomaly map with a package like GrADS. 

We can convert the CMP file (diff.cmp) to a NetCDF file by: 

cmp2cdl4 -n nmlist.txt -i diff.cmp -o j.cdl 

ncgen -o diff.nc j.cdl 

See the namelist file (nmlist.txt) for appropriate NetCDF attribute 

values. These need to be changed depending on the variable and data set. cmp2cdl4 is a 

recently written program so the documentation is sparse. 

 

The NetCDF file (diff.nc) can read by GrADS: 

grads 

(a graphics window will open) 

At the grads prompt (ga->) open the NetCDF file (diff.nc): 

sdfopen diff.nc 

To check the file information: 



 17 

q file 

 

This gives a listing: 

File 1 :  

  Descriptor: diff.nc 

  Binary: diff.nc 

  Type = Gridded 

  Xsize = 144  Ysize = 73  Zsize = 1  Tsize = 1 

  Number of Variables = 1 

    diff_mslp 0 -999 diff_MSLP 

The GrADS variable is named diff_mslp (diff_MSLP is the long NetCDF name). 

To display the single map: 

d diff_mslp 

To exit grads type: quit 

 
 



 18 

2. Decoding reanalysis data 

 

Decoding NetCDF data to CMP (‘conmap’) format 

 

The program read_nc2cmp can handle common NetCDF files, especially the reanalysis 

products.  

 

Usage: For brief help: read_nc2cmp 

and for some examples: read_nc2cmp –help 

 

read_nc2cmp: Version 2.0 (Feb 12 2007) 

Usage: read_nc2cmp [--help][-D idbg][-i ncfile][-o cmpfile][-d 

"lon,lat,time"] 

 [-u uservar][-g gridtype][-l levelvar][-L ilev][-r rtype][-s uscal][-

v vtype] 

 [-U units][-m no_maps][-p udunits][-M "map1,map2"] 

 D: 0= None 1= Basic 2= Verbose 3= Print dimension arrays to file 

fort.10 

 Note: Max. sizes of text variables 

 gridtype: 10 rtype: 5 vtype: 8 units: 8 

 --help: Gives some examples  

Some examples 

Many of the default settings of the options will be correct for common reanalysis products. The 

-d option is set for NCEP and NCEP2 by default, assuming that the longitude, latitude and time 

variables are named lon, lat and time. 

If you are unsure, use ncdump e.g. ncdump –h hgt.1980.nc, to check the NetCDF file 

header for the names of dimensions and variables – these are case-sensitive e.g. SLP is not the 

same as slp. 

 

(1) ERA40 with no level variable 

The output from ncdump for hgt.2002.Jun.500hPa.nc in folder ncdata is: 

 

netcdf hgt.2002.Jun.500hPa { 

dimensions: 

 longitude = 144 ; 

 latitude = 73 ; 



 19 

 time = UNLIMITED ; // (120 currently) 

variables: 

 float longitude(longitude) ; 

  longitude:units = "degrees_east" ; 

  longitude:long_name = "longitude" ; 

 float latitude(latitude) ; 

  latitude:units = "degrees_north" ; 

  latitude:long_name = "latitude" ; 

 int time(time) ; 

  time:units = "hours since 1900-01-01 00:00:0.0" ; 

  time:long_name = "time" ; 

 short z(time, latitude, longitude) ; 

  z:scale_factor = 0.217434325978148 ; 

  z:add_offset = 51602.802096924 ; 

  z:_FillValue = -32767s ; 

  z:missing_value = -32767s ; 

  z:units = "m**2 s**-2" ; 

  z:long_name = "Geopotential" ; 

 

// global attributes: 

  :Conventions = "CF-1.0" ; 

  :history = "2006-05-11 03:18:51 GMT by mars2netcdf-0.92" ; 

} 

Hence: 

read_nc2cmp -i ncdata/hgt.2002.Jun.500hPa.nc -o j.cmp 

-d "longitude,latitude,time" -u z -D 3 -r ERA40 -m 2 

 

The user variable is geopotential (z) and the three basic dimensions are named longitude, 

latitude and time. 

The dataset is ERA40 and as a test we will output the first two maps. Omit -m option to get all 
maps. 

-D is the debug option; 3 prints the dimensions to a file called fort.10. You can omit -D option. 

Note: For ERA40 geopotential, the program will divide by g= 9.807 m s**-2 to give 
geopotential height (m). 

 

(2) ERA40 with a level variable 

The output from ncdump for hgt.200208.nc in folder ncdata is: 



 20 

 

netcdf hgt.200208 { 

dimensions: 

 longitude = 144 ; 

 latitude = 73 ; 

 levelist = 23 ; 

 time = UNLIMITED ; // (62 currently) 

variables: 

 float longitude(longitude) ; 

  longitude:units = "degrees_east" ; 

  longitude:long_name = "longitude" ; 

 float latitude(latitude) ; 

  latitude:units = "degrees_north" ; 

  latitude:long_name = "latitude" ; 

 int levelist(levelist) ; 

  levelist:units = "millibars" ; 

  levelist:long_name = "pressure_level" ; 

 int time(time) ; 

  time:units = "hours since 1900-01-01 00:00:0.0" ; 

  time:long_name = "time" ; 

 short z(time, levelist, latitude, longitude) ; 

  z:scale_factor = 7.53787087081502 ; 

  z:add_offset = 241940.397676004 ; 

  z:_FillValue = -32767s ; 

  z:missing_value = -32767s ; 

  z:units = "m**2 s**-2" ; 

  z:long_name = "Geopotential" ; 

 

// global attributes: 

  :Conventions = "CF-1.0" ; 

  :history = "2006-05-08 06:31:19 GMT by mars2netcdf-0.92" ; 

} 

 

There are 23 levels. If you use ncdump -v levelist then you can see the levels: 

 

 levelist = 1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 150, 200, 250, 300, 400,  

    500, 600, 700, 775, 850, 925, 1000 ; 

 



 21 

If you want the 500 hPa level then you require levelist(17). 

Hence: 

read_nc2cmp -i ncdata/hgt.200208.nc -o j.cmp 

 –d "longitude,latitude,time" -u z -D 3 -r ERA40 -l levelist -L 17 -m 2 

 

(3) NCEP2 with no level variable 

 

The output from ncdump for hgt.58.0500.nc in the current folder is: 

 

netcdf hgt.58.0500 { 

dimensions: 

 time = 1460 ; 

 lat = 73 ; 

 lon = 144 ; 

variables: 

 double time(time) ; 

  time:units = "hours since 1-1-1 00:00:0.0" ; 

  time:long_name = "Time" ; 

  time:actual_range = 17154744., 17163498. ; 

  time:delta_t = "0000-00-00 06:00:00" ; 

 float lat(lat) ; 

  lat:units = "degrees_north" ; 

  lat:actual_range = 90.f, -90.f ; 

  lat:long_name = "Latitude" ; 

 float lon(lon) ; 

  lon:units = "degrees_east" ; 

  lon:long_name = "Longitude" ; 

  lon:actual_range = 0.f, 357.5f ; 

 short hgt(time, lat, lon) ; 

  hgt:long_name = "4xDaily Geopotential height" ; 

  hgt:actual_range = -513.f, 32308.f ; 

  hgt:valid_range = -700.f, 35000.f ; 

  hgt:units = "m" ; 

  hgt:add_offset = 32066.f ; 

  hgt:scale_factor = 1.f ; 

  hgt:missing_value = 32766s ; 

  hgt:precision = 0s ; 



 22 

  hgt:least_significant_digit = 0s ; 

  hgt:GRIB_id = 7s ; 

  hgt:GRIB_name = "HGT" ; 

  hgt:var_desc = "Geopotential height\n", 

    "H" ; 

  hgt:dataset = "NMC Reanalysis\n", 

    "L" ; 

  hgt:level_desc = "Multiple levels\n", 

    "F" ; 

  hgt:statistic = "Individual Obs\n", 

    "I" ; 

  hgt:parent_stat = "Other\n", 

    "-" ; 

} 

 

Hence: 

 

read_nc2cmp -i hgt.58.0500.nc -o j.cmp -d "lon,lat,time" -u hgt 

 -D 2 -r NCEP2 -m 2 

 

Note that the variable is called hgt and the dataset is NCEP2. The -D option with 2 

gives some extra information. Leave out the -m option to give all maps. 

 

For NCEP2 or NCEP data you probably just need to change the -u option (and 

-v and -U options for variables other than geopotential height). See (4) below. 

Look at the ncdump of the file (ncdump -h yourfile.nc) and check. In the above 

example, under Variables: 

 

short hgt(time, lat, lon) o 

 

Hence the variable is hgt => -u hgt 

 

(4) NCEP with a level variable 

The variable is specific humidity. 

 

netcdf shum.2005.500 { 



 23 

dimensions: 

 lon = 144 ; 

 lat = 73 ; 

 level = 1 ; 

 time = UNLIMITED ; // (1460 currently) 

variables: 

 float level(level) ; 

  level:units = "millibar" ; 

  level:actual_range = 500.f, 500.f ; 

  level:long_name = "Level" ; 

  level:positive = "down" ; 

  level:GRIB_id = 100s ; 

  level:GRIB_name = "hPa" ; 

 float lat(lat) ; 

  lat:units = "degrees_north" ; 

  lat:actual_range = 90.f, -90.f ; 

  lat:long_name = "Latitude" ; 

 float lon(lon) ; 

  lon:units = "degrees_east" ; 

  lon:long_name = "Longitude" ; 

  lon:actual_range = 0.f, 357.5f ; 

 double time(time) ; 

  time:units = "hours since 1-1-1 00:00:0.0" ; 

  time:long_name = "Time" ; 

  time:actual_range = 17566752., 17575506. ; 

  time:delta_t = "0000-00-00 06:00:00" ; 

 short shum(time, level, lat, lon) ; 

  shum:long_name = "4xDaily specific humidity" ; 

  shum:valid_range = -1.e-04f, 0.06543f ; 

  shum:actual_range = 0.f, 0.009062f ; 

  shum:units = "kg/kg" ; 

  shum:add_offset = 0.032666f ; 

  shum:scale_factor = 1.e-06f ; 

  shum:missing_value = 32766s ; 

  shum:precision = 6s ; 

  shum:least_significant_digit = 5s ; 

  shum:GRIB_id = 51s ; 

  shum:GRIB_name = "SPFH" ; 



 24 

  shum:var_desc = "Specific humidity\n", 

    "Q" ; 

  shum:dataset = "NMC Reanalysis\n", 

    "L" ; 

  shum:level_desc = "Multiple levels\n", 

    "F" ; 

  shum:statistic = "Individual Obs\n", 

    "I" ; 

  shum:parent_stat = "Other\n", 

    "-" ; 

 

// global attributes: 

  :Conventions = "COARDS" ; 

  :title = "4x daily NMC reanalysis (2005)" ; 

  :history = "Wed May 31 18:13:10 2006: /usr/local/bin/ncrcat -O -d 

level,500.000000 -d lat,-90.000000,90.000000 -d lon,0.000000,357.500000 -d time,0,1459 

/Datasets/ncep.reanalysis/pressure/shum.2005.nc 

/Public/www/128.250.120.93.150.18.13.8.nc\n", 

    "created 2005/01/03 by Hoop (netCDF2.3)" ; 

  :description = "Data is from NCEP initialized reanalysis\n", 

    "(4x/day).  It consists of most variables interpolated to\n", 

    "pressure surfaces from model (sigma) surfaces." ; 

  :platform = "Model" ; 

} 

 

Based on the above NetCDF header dump the following command will create a concatenated 
(multi-map) conmap file with a useful header for each map: 

 

read_nc2cmp -i shum.2005.500.nc -o j.cmp -d "lon,lat,time" -u shum -D 2 -r 

NCEP -m 2 -l level -L 1 -v SHUM500 -U "'kg/kg'" 

 

We set the variable name in the conmap header to be SHUM500 (-v) and the units 

to be kg/kg (-U) (note the extra single quotes to ensure that the /is treated as text). 

 

(5) NCEP Mean sea level pressure 

Consider the header dump of the NetCDF file slp.2004.nc i.e. ncdump -h slp.2004.nc 

netcdf slp.2004 { 

dimensions: 

 lon = 144 ; 



 25 

 lat = 73 ; 

 time = UNLIMITED ; // (1464 currently) 

variables: 

 float lat(lat) ; 

  lat:units = "degrees_north" ; 

  lat:actual_range = 90.f, -90.f ; 

  lat:long_name = "Latitude" ; 

 float lon(lon) ; 

  lon:units = "degrees_east" ; 

  lon:long_name = "Longitude" ; 

  lon:actual_range = 0.f, 357.5f ; 

 double time(time) ; 

  time:units = "hours since 1-1-1 00:00:0.0" ; 

  time:long_name = "Time" ; 

  time:actual_range = 17557968., 17566746. ; 

  time:delta_t = "0000-00-00 06:00:00" ; 

 short slp(time, lat, lon) ; 

  slp:long_name = "4xDaily Sea Level Pressure" ; 

  slp:valid_range = 87000.f, 115000.f ; 

  slp:actual_range = 92700.f, 111370.f ; 

  slp:units = "Pascals" ; 

  slp:add_offset = 119765.f ; 

  slp:scale_factor = 1.f ; 

  slp:missing_value = 32766s ; 

  slp:precision = 0s ; 

  slp:least_significant_digit = -1s ; 

  slp:GRIB_id = 2s ; 

  slp:GRIB_name = "PRMSL" ; 

  slp:var_desc = "Sea Level Pressure\n", 

    "P" ; 

  slp:dataset = "NMC Reanalysis\n", 

    "L" ; 

  slp:level_desc = "Sea Level\n", 

    "I" ; 

  slp:statistic = "Individual Obs\n", 

    "I" ; 

  slp:parent_stat = "Other\n", 

    "-" ; 



 26 

 

// global attributes: 

  :Conventions = "COARDS" ; 

  :title = "4x daily NMC reanalysis (2004)" ; 

  :base_date = 2004s, 1s, 1s ; 

  :history = "created 2004/01/03 by Hoop (netCDF2.3)" ; 

  :description = "Data is from NMC initialized reanalysis\n", 

    "(4x/day).  It consists of most variables interpolated to\n", 

    "pressure surfaces from model (sigma) surfaces." ; 

  :platform = "Model" ; 

} 

 

(1) To decode maps 5-8 of this mean sea level pressure file use the following command: 

 

read_nc2cmp -i slp.2004.nc -o jj.cmp -u slp -r NCEP -v PMSL -s 0.01 -M "5,8" 

 

The pressure variable is named slp (-u option). 

We need to scale the pressure in Pa to hPa i.e. apply a scaler of 0.01 (-s option). 

The -r and -v options are for setting the conmap header for the cyclone tracking scheme but 

may be used for general purposes. The -M option gives the map range to be decoded i.e. maps 

5-8. 

The screen output during program execution is:  

 

 NOTE: User scaler:   0.00999999978 

 Output map range:  5 -  8 

 NetCDF file opened successfully (ncid= 3) 

 Inquiring about variables ... 

 Reading longitudes ... 

 Reading latitudes ... 

 Reading times ... 

 Reading attributes ... 

 No. of maps to be extracted:  4 

 Reading user variable ... 

     5:PMSL                          NCEP      20040102 0000    MB           

2.5x2.5DEG 

     6:PMSL                          NCEP      20040102 0600    MB           

2.5x2.5DEG 



 27 

     7:PMSL                          NCEP      20040102 1200    MB           

2.5x2.5DEG 

     8:PMSL                          NCEP      20040102 1800    MB           

2.5x2.5DEG 

 NetCDF file closed successfully (ncid= 3) 

 Output conmap file: jj.cmp 

 Finished! 

 

The file jj.cmp contains the four decoded maps. 

 

(2) The first 10 maps may be decoded with: 

 

read_nc2cmp -i slp.2004.nc -o jj.cmp -u slp -r NCEP -v PMSL -s 0.01 -m 10 

 

(3) The entire file (1464 maps) may be decoded with: 

 

read_nc2cmp -i slp.2004.nc -o pmsl.2004.cmp -u slp -r NCEP -v PMSL -s 0.01 

 
 


